Всего: 26 1–20 | 21–26
Добавить в вариант
Параллельно стороне треугольника, равной 5, проведена прямая. Длина отрезка этой прямой, заключенного между сторонами треугольника, равна 2. Найдите отношение площади полученной трапеции к площади исходного треугольника.
Основание остроугольного равнобедренного треугольника равно 10, а синус противоположного основанию угла равен 0,6. Найдите площадь треугольника.
В окружность радиусом 6 вписан треугольник, длины двух сторон которого равны 6 и 10. Найдите длину высоты треугольника, проведенной к его третьей стороне.
Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 15 и AO = 10, то длина стороны AC равна:
На рисунке изображен треугольник ABC, в котором ∠ACB = 38°, ∠AMN = 109°. Используя данные рисунка, найдите градусную меру угла BAC.
Точка A движется по периметру треугольника KMP. Точки K1, M1, P1 лежат на медианах треугольника KMP и делят их в отношении 11 : 3, считая от вершин. По периметру треугольника K1M1P1 движется точка B со скоростью, в пять раз большей, чем скорость точки A. Сколько раз точка B обойдет по периметру треугольник K1M1P1 за то время, за которое точка A два раза обойдет по периметру треугольник KMP?
Дан треугольник ABC, в котором AC = 32. Используя данные рисунка, найдите длину стороны AB треугольника ABC.
Определите остроугольный треугольник, зная длины его сторон (см. табл.)
Треугольник | Длины сторон треугольника |
---|---|
ΔABC | 8 см; 15 см; 17 см |
ΔMNK | 4 см; 5 см; 8 см |
ΔBDC | 3 см; 4 см; 5 см |
ΔFBC | 7 см; 8 см; 9 см |
ΔCDE | 5 см; 11 см; 13 см |
В треугольнике ABC известно, что Укажите номер верного утверждения для сторон треугольника.
На рисунке изображен треугольник АВС, в котором
Используя данные рисунка, найдите градусную меру угла ANM четырехугольника ABMN.
Объем правильной треугольной пирамиды SABC равен 13. Через сторону основания ВС проведено сечение, делящее пополам двугранный угол SBCA и пересекающее боковое ребро SA в точке М. Объем пирамиды МАВС равен 6. Найдите значение выражения где
— угол между плоскостью основания и плоскостью боковой грани пирамиды SABC.
Треугольник ABC — равнобедренный с основанием AB. Используя данные рисунка, найдите градусную меру угла BAC треугольника ABC.
Площадь прямоугольного треугольника равна 2, а радиус описанной около него окружности равен R. Укажите номер формулы, которой может выражаться сумма катетов a и b.
АС — общая гипотенуза прямоугольных треугольников ABC и ADC. Плоскости этих треугольников взаимно перпендикулярны. Найдите квадрат длины отрезка BD, если
AD = DC.
В прямоугольном треугольнике ABC ∠C = 90°, CH — высота, проведенная к гипотенузе, ∠BCH = 30°. Для начала каждого из предложений А−В подберите его окончание 1−6 так, чтобы получилось верное утверждение.
A) Длина стороны ВС треугольника АВС равна ...
Б) Длина стороны АС треугольника АВС равна ...
B) Расстояние от точки пересечения биссектрис треугольника ABC
до стороны AB равно ...
1)
2)
3)
4)
5)
6)
Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: А1Б1В4.
Отрезок BD является биссектрисой треугольника АВС, в котором и
По отрезку из точек В и D одновременно навстречу друг другу с постоянными и неравными скоростями начали движение два тела, которые встретились в точке пересечения биссектрис треугольника АВС и продолжили движение, не меняя направления и скорости. Первое тело достигло точки D на 1 минуту 14 секунд раньше, чем второе достигло точки В. За сколько секунд второе тело прошло весь путь от точки D до точки В?